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A The estimating function for

The likelihood function for P(WW]S) can be derived as

N
L(y) = [ [ o x p§ > - x piir.
=1

Taking the log and using the fact that > ; gji = 1 for each i, the log-likelihood function
is

I(v) = Z [y1i Inpri + - +yp-1i In pp—1; — In(L +p1; + - - + pp-1:)] -
i=1

The likelihood equations are found by taking the first partial derivatives of I(vy) with
respect to each of the (D —1) x (T+1) unknown parameters. The general form of these

equations is: % = Zf\il hi(s1:)(gji — pji) for j=1,2,., D —1land t =0,1,2,..,T.
J

B Asymptotic Distribution for the proposed VE es-
— (new)

timator VE  (s1)
B.1 Regularity conditions to be satisfied:
L. riske)(S,W) >0 and P(6 = 1|S,W) > 0 almost surely.

2. risk() (S, W; B) is thrice differentiable with respect to 5. For /3 in a neighborhood
of the true value 3y, the third derivatives are bounded by an integrable function

of (Y,Z,8,W).



3. P(0 =1|Y,Z, W) as a function of « is thrice differentiable with respect to a. For
a in a neighborhood of the true value «p, the third derivatives are bounded by

an integrable function of (Y, Z, S, W).
4. W3 is nonsingular.

5. For all y,w, z, under By and ay,

P(yls, z,w)
—————dF =1
O</P(5 1|5,w)d (s|lw,d ) < oo

P(y|s, z,w
0< /|U5(y|5,z,w)|WdF(s|w,5 =1) < c0.

6. For all y,s,w,z, P(y|s,z,w)/P(§ = 1|s,w) and Us(y|s, z,w)P(yl|s, z,w)/P(d =
1]s,w) are twice differentiable with respect to , a, with the second derivatives

uniformly integrable with respect to F'(s|w,é = 1) for (5, «) within a neighbor-
hood of (5, ap)-

7. W, is nonsingular.

8. P||¥,,||* < oo and that the map y — PW, is differentiable at a zero o, with a

nonsingular derivative matrix.

For convenient notation, we let mg = 7o, (Y, Z, W) = P(6 = 0|Y, Z,W;ay), and
7 =ma(Y,Z,W)=P(6=0|Y,ZW;a).

9. P||W,l|I°> < oo and that the map o — P, is differentiable at a zero ag, with a

nonsingular derivative matrix.

10. For o in a neighborhood of ag, where ¢ > 0 and 1 satisfies E? < oo:

(0 — )| <Y la— oz0|1+<.

Conditions 1-6 strictly followed HGW for the asymptotic distribution of the pseudo-

score estimator B . Conditions 7-8 are needed to establish the asymptotic distribution
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of the WL estimator 4. Conditions 9-10 are needed for estimation with estimated
sampling weights, where we substitute my with a consistent estimator 7., where «
is a parameter to be estimated by ML from the Phase-I observations. Condition 10

typically follows from Condition 9 provided that 7, has a continuous second derivative.

B.2 Asymptotic normality:

Theorem 1: Under specified regularity conditions, as the sample size N — oo, we have

1.
V(B - B) = %N > 0% 2 W) £ op1) 2a MOV, ()
2. v
VN((@) —7) = %N D6l Yi S 2 W) + (1) 4 NO.K), ()
3.

—~
w
~—~

w((6)-0) 2R =)
gl v d T [ Bar Moz )
where 211 = V, 222 = K, 212 = 221 = COU(¢1(6,K S, Z, W),¢2((5, Y, S, Z, W))

Sketch of Proof:

B.2.1 Asymptotic normality of B:

The pseudo-score estimator 3 is then obtained by solving the equation U (8, Fn,7) =0,
and HGW proved that

\/N(B — ﬁ) = —\ilgl(ﬁ(), FJ,?TO)\/N {\I’N(ﬁo; F(T,ﬂ'o) + Z\PFI: [FNk — FI:O] + ‘1/[(3[ — Oéo]} —+ Op(l)

=1

N
Z 517}/17517227W)+0p( )

ﬂ\H

where
¢1<57YJ SJ Z7 W) = (10(5, Y7 S? Z7 W) + CL1<(5, S7 W) + CLQ((S,}/, Z7 W)7
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with
a0(8,Y, S, Z,W) = SUs(Y|S, Z,W) + (L = ) E{Us(Y|S. Z,W)|Y, Z, W, § = 1},
a1(6,S, W) = VNP g (Bo, F3)(Fr — Fro),
a2<5> Ya Z7 W) = \i]a(ﬁib Fgﬂr(aﬂ))lo?an((S’Y? Za W) + Op(1)>

and

V= ‘PglVar(gzﬁo)\i/gt
B.2.2 Asymptotic normality of #:

The weighted likelihood estimator 4 is obatained by solving:

N
Un(y) = 8% %; — zl,wz) he(s1:)(gji — pji) = 0.
Furthermore,
N
a%tawt/ ; oo, Z“wz)ht'(é‘u) ~hi(s16) - pji - (1= pji) (4)
*1(v) a 0;

i A — hy(sy) - he(s1:) P D 5
01OV ;Wo(yuzuwi) (o) - helsrs) -2y by (5)

The information matrix /(o) can be estimated by the observed information matrix
(%), whose elements are the negatives of the values in equations (4) and (5) evaluated
at 4.

Now following similar steps in (Breslow & Wellner 2006), we apply Theorem 19.26
of van der Vaart (1998) to conclude that

R 1 0; T(s) 4o
\/N(”Y — %) = JN Z oW, wi)ZO(S“) + 0p(1)

i=1



where [y denotes the efficient influence function lo(s1;) = I~ (7o)lo(7o|51:)-

The asymptotic variance is therefore:

VarvV N — ) = Var(i%)

= VarE(iio\S(l)) + EVar(ilNo]S(l))
T T

ZSZ Var(5|S(1))]

To

= Var(%) +F

—275).

B 1
= I(70) " + Po ™

Estimation with estimated sampling weights: In this section, we show that

under mild assumptions,

VN [¥(&) —7] = VN[F(@) — ()] + VN [§(ao) — 0]
N
1
= —— > 66,75, Si(1), Zi, W) + 0,(1) =4 N(0,K).  (6)
VN
When we substitute my with a consistent estimator 7,, where « is a parameter to

be estimated by ML from the Phase-I observations, under regularity Condition 9, the

ML estimator & is consistent and asymptotically normal with influence function 78 SO

that ) e o
) =R () @)
Moreover, v
N
FOBERERTIEY
I id%(S-) li L T a—ag)| + —i(s%(sl.) [ "0 (6 — ao)]
N — B I SN w2 — ' '




By regularity Condition 10,

v .
1 X - 1 1 Al
|[Rn| = N;éile(Si) [E—W—O_ — (@ —a)
< &3 ufus] o

= 0,(1)[a — aol [& — a0l = 0,(1)0,(N")0,(1).

Multiplying through (8) by v/N, we conclude that equation (6) holds by virtue of
VNRy = 0p(1) and the strong law of large numbers.

Furthermore,

~T
5~ & lomy", 8 82 5 ol
K = VarV'N [3(&) — | = Var(_lo)__.ﬂ(_.ﬁo—*l_,ﬂoo

0 0 0 7'('0(1 —7T0> 0 0

B.2.3 Asymptotic normality of 3

211 212
9
ﬁ( ) 221 zzzb (9)
where 211 = V, 222 K 212 = 221 = COU le (5 Y S Z W) ¢2(6 Y S Z W))

The proposed VE estimator \//I\E(new)(sl) is a continuous function of B and #; there-

fore, the regular delta method applies.

C Theoretical justification for perturbation resam-
pling methods

C.1

In this section, we show that

N
VR3O -p) = —[#) —1\%2 (65, i S2. 26 W' + 0,(1)
=
_ _[\1;6]—1\/%Zgbl(éi,m,si,zi,wi)ei+op(1). (10)



We shall use F to denote the o-field generated by the original data (6;, Y;, S;, Z;, W5).
First, consider the unconditional version of B(e) with respect to the joint probability
space of F and ¢;(i =1,..,N):

Under suitable equicontinuity conditions and smoothness conditions (van der Vaart

and Wellner, 1996), we have:

W = VN - 5

=1

K
. -1 .
= [0 Fom)| VN {wsmo; Fyomo) + Y Wl [F) — Fol + U0 — ag)

N
_ g0 4#2 Ois v o o
B [ Vs ] VN ‘= 61°(0, Y2, S, Zi, Wi) + 0p(1),

where gbf) = a((f) + agg) + age).
To show that Wi7 = VN(3© — By) = —[Us] "1 S, 62(0:, Vi, Si, Zi, Wi)es + 0,(1),

it suffices to show the following:

. (E) .

2. a((f) = €ag
3. al? = ea, + 0,(1
- 1+ 0p(1)

4. af) = eay + 0,(1).

1. To show that \i/g) = \115

T, (€ * 0 € *
(8, Fy,mo) = %\I’”(ﬁo,Fo,ﬂo)

Yis, Z h(s|Y, Z d
— —E0[€515(Y‘S, Z’ W) —6(1 _5)anB< |87 7W> (S| ) 7W) S

9p

Since € is independent of (4,Y,S, Z, W) and E(e) = 1, \Pg(ﬁo, Fy,m) = \i//(;) (Bo, Fy, m0).

].

} + 0p(1)



2. To show that a\” = eaq
ao(6,Y, 8, Z,W)© = ay(8,Y, S, Z,W) by definition of 3.

3. To show that a\” = ea;, + 0,(1)
We first derive the general asymptotic properties of a perturbed MLE estimator:
L(B) = [Ty po(i), 1(B) = Y1y logps(a:), #51(8) = I(8) = U(B), and the MLE 3 is
obtained by solving the estimating equation Y ., U(8|X;) = 0,

= Li(B) = Liu(Bo) — (~=B)/n(B — By), where |8 — Bol < |~ fol- And
—wn(B3) = = in(Bo) + 0p(1) = I(5o).

Thus V(5 — o) = 1 (Bo) 7 Xty In(Bol X0) + 0p(1) = N(0, 17" (Bo)).

Now define the perturbed MLE B(E) as the solution of
Yo, (98] X;) = 0, where [)(8]X;) = €i(B|X;).
Then 0 = Jii?(89) = il (B0)— (~22L5) V(39— o), where |8~ ol < 89—
Note that i)(8X;) = ei(81X:), thus — By {15 (861X) } = —Eo {Tn(861) } = 1(80).
—3B(87) = =117 (Bo) + 0,(1) = I(fo).

Therefore,

V(B - By) = [_1(/60)% Zz:; 199(Bo| X;) + 0,(1)

= )= Y hAIX) -6+ oy(1),

Take the specific case of a Bernoulli distribution. If X!s are i.i.d. Bernoulli(p), then

the MLE p = # The perturbed version of p takes the form pl© = %
=17

Notice that a; represents an adjustment due to estimating Fy (s) = Pr(S < s|W =

N §: I(Wy=wp,)I(S;<s
Wy, 0 = 1) = Pko by I, = = va((SiI(Wik:)uEk) :

. Conditional on W = wj, and ¢ = 1,
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I(S; < s) ~ Bernoulli(py,). Thus following the above arguments:
it VN [Fa(s) = Fiey(8)] = % 20y 0, (5)(83, S5, Wi) + 0p(1),

then VN [F{()(s) = Fie,(5)] = & X 0m ()01, 80, W3) - €4 + 0y(1), where FY) =
SN 6 I(Wi=wy,)I(S;<s)e;
SN I(Wi=wy)e;

Following similar arguments for \ifg) = Wy, it is straightforward to show \If;f’z (Bo, F§) =
U e (Bo, F).

Thus
k

a0, S W) = (B, F) [FU(s) = Fi ()

1

= Z\IJF (B0 F5) [Ewe(s) = Fiey ()] -+ 0,(1)

= al(éz, Si, Wi) - € + 0,(1).

4. To show that a¥) = ea, + 0p(1)

Let n(Y, Z, W, ) denote P(§ = 1|Y, Z, W). We estimate o by maximizing LogL(«a|Y, Z, W) =

Yo 0ilogn(Y;, Zi, Wiy o)+ (1=6;)log {1 — w(Y;, Z;, Wi; ) }. Therefore & is a MLE esti-
mator and following similar arguments in 3., we get that v/ NW, (5o, Fff, 7(ap))[—ap] =
T iy a2(83, Vi, Zi, W) + 0,(1),
VN (5o, Fy, m(00))[6€) — ao] = o5 SO0, a5 (6, Vi, Zi, Wi) + 0,(1),
and a$”(8;,Y;, Zi, W) = as(6:, Vi, Zi, Wi) - € + op(1).

Therefore, the proof for (10) is completed. Furthermore,

~

V(B — B) = —[Wg]" fZasl 0i, Yi, Si, Zis Wi) (e — 1) + 0p(1).

C.2
In the this section, we show that

N
VN(EI(@) = 4(a)) Z (0:,Y:, Si(1), 2, W) - (&5 = 1) + 0,(1).

%\H
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Similar to the arguments used in Section C.1,

\/N(&<e>(6ao)—70) :\/N(% 2_21: la<5€> ) (1)

Moreover

VN(FE (@) - 4(a) Z@ 0iy Vi Si(1), Ziy W) - (e = 1) + 0p(1).

Conditional on the data and given that E[e] = 1, Varle] = 1,E[(e — 1)%] = 1, we
have Ego(e — 1)] =0, Var[go(e — 1)] = Varlgo],
cov($1(0,Y, S, Z,W)(e=1),$2(6,Y, S, Z,W)(e=1)) = cov(¢1(8,Y, 5, Z, W), $2(6,Y, S, Z, W)).

Therefore, conditional on the data

CRAN i D
v <<’AV(E) -\ i MO o1 Xa2| /) (12)
Because logRAR(e) is a continuous function of B(e) and 49, the regular delta method

applies and the unconditional distribution of v N {logRAR — logRRo} can be approxi-
mated by v N {logRAR(E) — logRAR} conditional on the observed data.
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D Simulation results from the BIP-only design

Rare Case
r,=5, I‘p=0 I’v=10, I‘p=0 rv=AII, I’p=0

T,=3.4% T,=0% . *5 B=6.9% T=0% . - 7,=100% T,=0%

7
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21 = - 21 = — 21 = —
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Non-Rare Case
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%0 9
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Figure 1: Estimated vaccine efficacy curve using our proposed method without as-
sumption A8 and using the HGW method with assumption A8, compared to the true
VE curve for checking the bias of these two estimators based on 500 simulated datasets
for the Rare case where the probability of Y =1 for Z = 0 (r9) equals 0.090 and for
Z =1 (r) equals 0.042, the Med-Rare case where ry = 0.055 and 7 = 0.020, and the
Non-Rare case where o = 0.0090 and r; = 0.0068 with a BIP-only design.
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Rare Case

ry=5, rp=0 =10, r,=0 ry=All, r,=0
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Med-Rare Case
r,=5, I’p=0 I‘v=10, I’p=0 rv=AII, I’p=0
N & o
n
T o | 0|
€~ - -
<)
o
E
o
w
(/7]
2
<
o o o
T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
1 S1 S1
Non-Rare Case
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o
w
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Figure 2: Estimated standard errors of logﬁ(sl), solid for the Monte Carlo SEs,
dashed for the perturbation resampling approach and dotted for the bootstrap ap-
proach, for the Rare case, the Med-Rare case, and the Non-Rare case with a BIP-only
design.
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Rare Case
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Figure 3: Empirical coverage probabilities of 95% pointwise confidence intervals and
simultaneous confidence bands about VE(s;), for the Rare case, the Med-Rare case,
and the Non-Rare case with a BIP-only design.

new) and sampling

The relative efficiency, defined as ratio of sampling variance of B (
variance of B\(AS), was 1.23, 1.11, 1.32, and 1.12 for the Med-Rare Case BIP-only design

with r, = 10 and r, = 0 for 8y, B1, B2, B3, respectively.
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